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Introduction
Generative modeling

p0 ∈ P(Rd)
p1 ∈ P(Rd)

x0 =
x1 =

ψ(x0)

Goal: Find ψ such that for x0 ∼ p0, ψ(x0) ∼ p1.
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Introduction
Generative modeling

p0 ∈ P(Rd)
p1 ∈ P(Rd)

x0 =
x1 =

ψ(x0)

Goal: Find ψ such that for x0 ∼ p0, ψ(x0) ∼ p1.

Problem: Dimension d is big, and p1 is only known from data.
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ODEs and probability flows
Velocity field u : [0, 1]× Rd → Rd

Flow map ψ : [0, 1]× Rd → Rd

Probability path pt ∈ P(Rd).{
ψ0(x) = x
∂
∂tψt(x) = ut(ψt(x))

(Flow ODE)

(Continuity equation)

p0
pt = ψt#p0

p1

ut(x)

x0

ψt(x0)

ψ1(x0)

= p0 ◦ ψ−1
t

∂
∂tpt + div(ptut) = 0

∀x ∈ Rd



4 - 2

ODEs and probability flows
Velocity field u : [0, 1]× Rd → Rd

Flow map ψ : [0, 1]× Rd → Rd

Probability path pt ∈ P(Rd).{
ψ0(x) = x
∂
∂tψt(x) = ut(ψt(x))

(Flow ODE)

(Continuity equation)

p0
pt = ψt#p0

p1

ut(x)

x0

ψt(x0)

ψ1(x0)

Question :

Can I find a ut(x) to
follow (pt) between 0 and 1.

= p0 ◦ ψ−1
t

∂
∂tpt + div(ptut) = 0

∀x ∈ Rd
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(Continuous) Normalizing flows
Main idea: Minimize KL divergence or maximize log-likelihood

KL(p1|ψθ#p0) = −Ex∼p1(log(ψθ#p0(x)) + cst

= −Ex∼p1 [log(p0(ψ
−1
θ (x)) + log(det(Jψ−1

θ
(x))] + cst

p0 ψθ#p0 p1ψθ

(change of variable)
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(Continuous) Normalizing flows
Main idea: Minimize KL divergence or maximize log-likelihood

KL(p1|ψθ#p0) = −Ex∼p1(log(ψθ#p0(x)) + cst

= −Ex∼p1 [log(p0(ψ
−1
θ (x)) + log(det(Jψ−1

θ
(x))] + cst

The map ψθ has to be invertible.

We need to have access to Jψ−1
θ

.

p0 ψθ#p0 p1ψθ

Choice : ψθ = fK ◦ · · · ◦ f1

log(det(Jψ−1
θ

) =
∑
k

log(det(Jf−1
k

))

log(p0(ψ
−1
θ ) = log(p0(f

−1
1 ◦ · · · ◦ f−1

K ))

fk simple and invertible
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(Continuous) Normalizing flows
Main idea: Minimize KL divergence or maximize log-likelihood

p0 ψθ#p0 p1ψθ

In particular: ψθ = fK ◦ · · · ◦ f1 with fk(x) = x+ hk(x)

Then xk = fk(xk−1)

= xk−1 + hk(xk−1)

= xk−1 +
1
Kuk−1(xk−1)

For suitable hk and u

So xK = ψθ(x0) is the Euler discretization of{
x(0) = x0
∂
∂tx(t) = ut(x(t))

(Flow ODE)

CNF: Train directly vθ(t, x) maximizing −
∫ 1

0

div(vθ(x(t), t))

(invertible by
backward integration)

(log-likelihood)

fk
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Advantages and limitations

Regular Normalizing Flows have limited architectures.

Continuous Normalizing Flows have some advantages:

Inversion is easier (only integrate from 1 to 0).

Less restrictive: choose any u Lipschitz in space ad cont. in time.

Likelihood easier to compute, no log of determinant.

Training with log-likelihood does not scale well to high dimension.

There is an infinite number of probability path pt.

CNF are unstable in high dimension:

Conditional Flow Matching: Fix a specific vector field & probabilty path
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Conditional Flow Matching

p0
p1

x0

Goal: Train vθ(t, x) with LFM(θ) = Et,pt(x)∥vθ(t, x)− ut(x)∥2

x1

untractable

Choose π(z) ∈ Π(p0, p1)

Conditioning:

Choose cond. path pt(x|z)

π(·,Ω) = p0
π(Ω, ·) = p1

Defines a unique ut(x|z)
via (continuity eq.)

LCFM(θ) = Et,π(z),pt(x|z)∥vθ(t, x)− ut(x|z)∥2

pt(·|z)

ut(·|z)

z = (x0, x1) ∼ π
Example :

π = p0 ⊗ p1

pt(x|z) = δ(1−t)x0+tx1

Then ut(x|z) = x1 − x0.
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Conditional Flow Matching

Theorem : For any z ∼ π with π ∈ Π(p0, p1), the expectancies of the

ut(x) = Eπ(z)[ut(x|z)] are solution of the same continuity equation.

Theorem : (FM and CFM loss are equivalent)

LCFM(θ) = Et∼U(0,1),π(z),pt(x|z)∥vθ(t, x)− ut(x|z)∥2

= Et∼U(0,1),pt(x)∥vθ(t, x)− ut(x)∥2 + cst

probability path pt(x) = Eπ(z)[pt(x|z)] and of the vector field

[Lipman et. al 23]

= LFM(θ) + cst

Training:

Sampling:

t ∼ U(0, 1)
x0

x1
ut(x|z)

x vθ(t, x)

x0 ∼ p0
x1 ∼ pdata

t ∼ U(0, 1)
LCFM with
minimize {
xk+1 = xk +

1
N vθ(tk, xk)
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What about Optimal Transport ?

The Wasserstein distance between µ ∈ P(Rd) and ν ∈ P(Rd) is defined by
Definition: (Wasserstein distance)

Wp
p(µ, ν) = inf

T#µ=ν

∫
Rd

∥x− T (x)∥pp dµ(x)

where T#µ = µ ◦ T−1 is the pushforward measure of µ by T .

µ

ν

T

A

T (A)

(Transport condition)

(Optimality)

minimal
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What about Optimal Transport ?

The Wasserstein distance between µ ∈ P(Rd) and ν ∈ P(Rd) is defined by
Definition: (Wasserstein distance)

Wp
p(µ, ν) = inf

T#µ=ν

∫
Rd

∥x− T (x)∥pp dµ(x)

where T#µ = µ ◦ T−1 is the pushforward measure of µ by T .

µ

ν

Definition: (Benamou-Brenier or dynamic formulation of OT)

W2
2(µ, ν) = inf

u

∫
Rd

∫ 1

0

∥u(t, x)∥2 d ρt(x) ∂
∂tρt + div(ρtu(t, ·)) = 0

ρ0 = µ, ρ1 = ν{

ρt

u(t, x)
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What about Optimal Transport ?

The Wasserstein distance between µ ∈ P(Rd) and ν ∈ P(Rd) is defined by
Definition: (Wasserstein distance)

Wp
p(µ, ν) = inf

T#µ=ν

∫
Rd

∥x− T (x)∥pp dµ(x)

where T#µ = µ ◦ T−1 is the pushforward measure of µ by T .

µ

ν

Definition: (Benamou-Brenier or dynamic formulation of OT)

W2
2(µ, ν) = inf

u

∫
Rd

∫ 1

0

∥u(t, x)∥2 d ρt(x) ∂
∂tρt + div(ρtu(t, ·)) = 0

ρ0 = µ, ρ1 = ν{

ρt

u(t, x) Optimality condition:

Trajectories are straight

Flow Matching frameworkOptimality: minimize energy
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Optimal transport flow matching

Optimal transport flow is the ideal candidate for FM

Impossible in practice, bad high dimension scaling, O(n3).

One solution: minibatch OT [Tong et. al 23, Pooladian et. al 23]

Sample (xi)
n
1 ∼ p0 and (yi)

n
1 ∼ pdata.

Compute optimal transport between (xi) and (yi)

Train vθ to match yi − xi. x1

x2

y2

y1Straighter trajectories

Faster integration and thus sampling

Limitation: Minibatch OT is not a great approximation in high dimension.
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Comparison in 2d

Independant sampling Minibatch OT sampling
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Higher dimension: CIFAR10

FID along training with
DoPri 5 solver

FID for euler solver with different
NFE after 400k training steps

Experiments on CIFAR10 [Tong et al. 23]

FID is better for minibatch OT when few NFE

Not very convincing in high dimension (small diff, no std dev)
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Higher dimension: CIFAR10

Generated CIFAR10 samples:

ICFM OTCFM
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Conclusion and Remarks

Conditional Flow Matching is a new simple and efficient framework
for generative modeling.

Minibatch optimal transport leads to straighter flows but is not really
better in high dimension.

An open question: Why does flow matching generalizes well the dataset ?

[Gagneux et al. ”The Generation Phases of Flow Matching:

a Denoising Perspective.” (2025).]


