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Introduction

Generative modeling
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oal: Find v such that for z¢ ~ pg, Y (xg) ~ p1.
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QEPRd

Goal: Find 9 such that for xg ~ pg, Y (xg) ~ p1.
Problem: Dimension d is big, and p; is only known from data.



ODEs and probability flows

o Velocity field u : [0,1] x R? — R?
e Flow map v : [0,1] x RY — R
* Probability path p; € P(R?).

po(z) = o
Vo € RY < Flow ODE
P ERN 2uia) = wlwnlay) (oW OPE)
%pt 4 div(psuy) = 0 (Continuity equation)




ODEs and probability flows

o Velocity field u : [0,1] x R? — R4
e Flow map v : [0,1] x RY — R

* Probability path pr € P(R"). Can | find a uy(z) to
fwo(x) — follow (p;) between 0 and 1.

%wtm w(e()) (oW OPE)

%pt 4 div(psuy) = 0 (Continuity equation)

Question :
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(Continuous) Normalizing flows

Main idea: Minimize KL divergence or maximize log-likelihood

we#po”_\

KL(p1 ’¢9#po) = —Eynp, (1Og(¢9#po (z)) + cst

= By, [log(po(vy  (2)) + log(det(J,

(change of variable)

(x))] + cst
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(Continuous) Normalizing flows

Main idea: Minimize KL divergence or maximize log-likelihood

Po we#po’,_\

Vo

KL(p1 ’¢9#po) = —Eynp, (1Og(¢9#po (z)) + cst

= —FEsp, [log(pg(we_l(:ﬁ)) — log(det(Jwe_l (x))] + cst

e The map ¥y has to be invertible.

e \We need to have access to Jw—l
6

Choice : ¢p = fxo---0fi 10%(2?0(%_1) =log(po(fy "0+ fx'))

/ . log(det(J Zlog (det(J fk: 1))

fr simple and invertible
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(Continuous) Normalizing flows

Main idea: Minimize KL divergence or maximize log-likelihood

In particular: 19 = fxo---0 f1 with fi(x) =z + hi(x)

Then Ll = fk(a:k_l) (
= Tk-1 hk(mk—l)/\

For suitable A and u

— Lk—1 11<Uk—1($k—1)

So xx = Wy(xg) is the Euler discretization of
r (invertible by

< ZEa(O) = X (F|OW ODE) 44— backward integration)
L get(t) = ur(x(t))

1
CNF: Train directly vg(t, x) maximizing —/ div(vg(x(t),t)) (log-likelihood)
0
5 -3




Advantages and limitations

e Regular Normalizing Flows have limited architectures.

e Continuous Normalizing Flows have some advantages:
o Less restrictive: choose any u Lipschitz in space ad cont. in time.
e Inversion is easier (only integrate from 1 to 0).

e |ikelihood easier to compute, no log of determinant.

e CNF are unstable in high dimension:

e Training with log-likelihood does not scale well to high dimension.

e There is an infinite number of probability path p;.

Conditional Flow Matching: Fix a specific vector field & probabilty path



Conditional Flow Matchin

Goal: Train vy (t, x) with Lpy(0) = Et,pt(:c)Hve(tafE) — ug(z)||?

Conditioning: w untractable

(-, Q) =
o Choose 7(z) € Il(pg, p1) < wgﬂ,-; 2123(1)

e Choose cond. path p;(z|z) Defines a unique u;(x|z)

~_____— via (continuity eq.)
® CCFM(H) — Etm(z),pt(ﬂz)uve(t?x) T ut($‘Z)H2

2= (xg,x1) ~ T

Example :
Lo
® T =poXp1 4
o Di(2|2) = 6(1—t)mo-ttas o

Then us(x|z) = 21 — x0.

Po
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Conditional Flow Matchin

Theorem : For any z ~ w with m € II(pg, p1), the expectancies of the

probability path p;(x) = E () p:(x|2)] and of the vector field
ut(x) = Er(»)|us(z]z)] are solution of the same continuity equation.

Theorem : (FM and CFM loss are equivalent) [Lipman et. al 23]

Lorm(0) = Eiri(0.1).7(2).p, (x]2) ||V (E, ) — ue(2|2) ]2

— EtNZ/{(O,l),pt(:c) H’U@ (t, CIZ‘) — Uy (CIZ)HQ + cst
— LM ((9) + cst

Co. . t~U(0,1
e Training: Minimize {xo ~ 1(90 ) L \
Lerm with 21 ~ pdata X r  ve(t, )
bl 1

e Sampling: xj41 = T + %Ue(tkaﬂfk)



What about Optimal Transport ?

Definition: (Wasserstein distance)
The Wasserstein distance between i € P(R%) and v € P(R?) is defined by
Wo(uv) = inf [ o~ T(@)[5d ()
T#,u,:V Rd
where Ty, = po T~ " is the pushforward measure of u by T

(Transport condition)

(Optimality)




What about Optimal Transport ?

Definition: (Wasserstein distance)
The Wasserstein distance between i € P(R%) and v € P(R?) is defined by

Wh(uv) = inf [ e~ T(@)5d p(z)
#p=V JRd
where Ty, = po T~ " is the pushforward measure of u by T

Pt

Definition: (Benamou-Brenier or dynamic formulation of OT)

1 - —
pPo = W, P1 =V
2 . 2
A 2(:“7 V) - lgf /]Rd /() HU(t, :E)H dpt(x) {%,Ot + diV(,OtU(t, )) =0

9-2



What about Optimal Transport ?

Definition: (Wasserstein distance)
The Wasserstein distance between i € P(R%) and v € P(R?) is defined by
Wo(uv) = inf [ o~ T(@)[5d ()
T#,u,:V Rd
where Ty, = po T~ " is the pushforward measure of u by T

Optimality condition:

Trajectories are straight

0. 3 Optimality: minimize energy Flow Matching framework



Optimal transport flow matching
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Optimal transport flow is the ideal candidate for FM
L» Impossible in practice, bad high dimension scaling, O(n?).

One solution: minibatch OT [Tong et. al 23, Pooladian et. al 23]

o Sample (z;)7 ~ po and (¥:)7 ~ Pdata-
e Compute optimal transport between (x;) and (y;)

e T[rain vg to match y; — x;.

Straighter trajectories

Faster integration and thus sampling

Limitation: Minibatch OT is not a great approximation in high dimension.
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Comparison in 2d

Prior sample z(S) * °
Flow
« 2(0)

Prior sample z(S)
Flow
e 2(0)

Independant sampling

Minibatch OT sampling




Higher dimension: CIFAR10
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Experiments on CIFAR10 [Tong et al. 23]
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FID is better for minibatch OT when few NFE

Not very convincing in high dimension (small diff, no std dev)



Higher dimension: CIFAR10

Generated CIFAR10 samples:
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Conclusion and Remarks

e Conditional Flow Matching is a new simple and efficient framework
for generative modeling.

e Minibatch optimal transport leads to straighter flows but is not really
better in high dimension.

e An open question: Why does flow matching generalizes well the dataset ?

[Gagneux et al. " The Generation Phases of Flow Matching:
a Denoising Perspective.” (2025).]
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